Visibility Estimation and Joint Inpainting of Lidar Depth Maps
BEVILACQUA, Marco
Institut de Mathématiques de Bordeaux [IMB]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Méthodes d'Analyses pour le Traitement d'Images et la Stéréorestitution [MATIS]
Voir plus >
Institut de Mathématiques de Bordeaux [IMB]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Méthodes d'Analyses pour le Traitement d'Images et la Stéréorestitution [MATIS]
BEVILACQUA, Marco
Institut de Mathématiques de Bordeaux [IMB]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Méthodes d'Analyses pour le Traitement d'Images et la Stéréorestitution [MATIS]
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Méthodes d'Analyses pour le Traitement d'Images et la Stéréorestitution [MATIS]
Langue
en
Communication dans un congrès
Ce document a été publié dans
IEEE International Conference on Image Processing (ICIP), 2016-09-25, Phoenix, AZ.
Résumé en anglais
This paper presents a novel variational image inpainting method to solve the problem of generating, from 3-D lidar measures, a dense depth map coherent with a given color image, tackling visibility issues. When projecting ...Lire la suite >
This paper presents a novel variational image inpainting method to solve the problem of generating, from 3-D lidar measures, a dense depth map coherent with a given color image, tackling visibility issues. When projecting the lidar point cloud onto the image plane, we generally obtain a sparse depth map, due to undersampling. Moreover , lidar and image sensor positions generally differ during acquisition , such that depth values referring to objects that are hidden from the image view point might appear with a naive projection. The proposed algorithm estimates the complete depth map, while simultaneously detecting and excluding those hidden points. It consists in a primal-dual optimization method, where a coupled total variation regularization term is included to match the depth and image gradients and a visibility indicator handles the selection of visible points. Tests with real data prove the effectiveness of the proposed strategy.< Réduire
Mots clés en anglais
Inpainting
Total Variation
Depth Maps
Lidar
Point Cloud
Visibility
Origine
Importé de halUnités de recherche