Maximal representations of uniform complex hyperbolic lattices
Langue
en
Document de travail - Pré-publication
Résumé en anglais
Let $\rho$ be a maximal representation of a uniform lattice $\Gamma\subset{\rm SU}(n,1)$, $n\geq 2$, in a classical Lie group of Hermitian type $H$. We prove that necessarily $H={\rm SU}(p,q)$ with $p\geq qn$ and there ...Lire la suite >
Let $\rho$ be a maximal representation of a uniform lattice $\Gamma\subset{\rm SU}(n,1)$, $n\geq 2$, in a classical Lie group of Hermitian type $H$. We prove that necessarily $H={\rm SU}(p,q)$ with $p\geq qn$ and there exists a holomorphic or antiholomorphic $\rho$-equivariant map from complex hyperbolic space to the symmetric space associated to ${\rm SU}(p,q)$. This map is moreover a totally geodesic homothetic embedding. In particular, up to a representation in a compact subgroup of ${\rm SU}(p,q)$, the representation $\rho$ extends to a representation of ${\rm SU}(n,1)$ in ${\rm SU}(p,q)$.< Réduire
Origine
Importé de halUnités de recherche