A Local Velocity Grid Approach for BGK Equation
BERNARD, Florian
Politecnico di Torino = Polytechnic of Turin [Polito]
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
Institut de Mathématiques de Bordeaux [IMB]
Politecnico di Torino = Polytechnic of Turin [Polito]
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
Institut de Mathématiques de Bordeaux [IMB]
IOLLO, Angelo
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
Institut de Mathématiques de Bordeaux [IMB]
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
Institut de Mathématiques de Bordeaux [IMB]
PUPPO, Gabriella
Universitá degli Studi dell’Insubria = University of Insubria [Varese] [Uninsubria]
Universitá degli Studi dell’Insubria = University of Insubria [Varese] [Uninsubria]
BERNARD, Florian
Politecnico di Torino = Polytechnic of Turin [Polito]
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
Institut de Mathématiques de Bordeaux [IMB]
Politecnico di Torino = Polytechnic of Turin [Polito]
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
Institut de Mathématiques de Bordeaux [IMB]
IOLLO, Angelo
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
Institut de Mathématiques de Bordeaux [IMB]
Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
Institut de Mathématiques de Bordeaux [IMB]
PUPPO, Gabriella
Universitá degli Studi dell’Insubria = University of Insubria [Varese] [Uninsubria]
< Réduire
Universitá degli Studi dell’Insubria = University of Insubria [Varese] [Uninsubria]
Langue
en
Article de revue
Ce document a été publié dans
Communications in Computational Physics. 2014, vol. 16, p. 956 - 982
Global Science Press
Résumé en anglais
The solution of complex rarefied flows with the BGK equation and the Discrete Velocity Method (DVM) requires a large number of velocity grid points leading to significant computational costs. We propose an adaptive velocity ...Lire la suite >
The solution of complex rarefied flows with the BGK equation and the Discrete Velocity Method (DVM) requires a large number of velocity grid points leading to significant computational costs. We propose an adaptive velocity grid approach exploiting the fact that locally in space, the distribution function is supported only by a subset of the global velocity grid. The velocity grid is adapted thanks to criteria based on local temperature, velocity and on the enforcement of mass conservation. Simulations in 1D and 2D are presented for different Knudsen numbers and compared to a global velocity grid BGK solution, showing the computational gain of the proposed approach.< Réduire
Mots clés en anglais
kinetic models
BGK model
Discrete Velocity Method
Origine
Importé de halUnités de recherche