Discrete asymptotic equations for long wave propagation
BELLEC, Stevan
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
COLIN, Mathieu
Institut Polytechnique de Bordeaux [Bordeaux INP]
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Institut de Mathématiques de Bordeaux [IMB]
Institut Polytechnique de Bordeaux [Bordeaux INP]
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Institut de Mathématiques de Bordeaux [IMB]
RICCHIUTO, Mario
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
BELLEC, Stevan
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
COLIN, Mathieu
Institut Polytechnique de Bordeaux [Bordeaux INP]
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Institut de Mathématiques de Bordeaux [IMB]
Institut Polytechnique de Bordeaux [Bordeaux INP]
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Institut de Mathématiques de Bordeaux [IMB]
RICCHIUTO, Mario
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
< Réduire
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Langue
en
Article de revue
Ce document a été publié dans
SIAM Journal on Numerical Analysis. 2016, vol. 54, n° 6, p. 3280-3299
Society for Industrial and Applied Mathematics
Résumé en anglais
In this paper, we present a new systematic method to obtain some discrete numerical models for incompressible free-surface flows.The method consists in first discretizing the Euler equations with respect to one variable, ...Lire la suite >
In this paper, we present a new systematic method to obtain some discrete numerical models for incompressible free-surface flows.The method consists in first discretizing the Euler equations with respect to one variable, keeping the other ones unchanged and thenperforming an asymptotic analysis on the resulting system. For the sake of simplicity, we choose to illustrate this method in the context of the Peregrine asymptotic regime, that is we propose an alternative numerical scheme for the so-called Peregrine equations.We then study the linear dispersion characteristics of our new scheme and present several numerical experiments to measure the relevance of the method.< Réduire
Project ANR
Tsunamis en Atlantique et MaNche : Définition des Effets par Modélisation - ANR-11-RSNR-0023
Origine
Importé de halUnités de recherche