Finite dimensional approximations for a class of infinite dimensional time optimal control problems
VALEIN, Julie
Systems with physical heterogeneities : inverse problems, numerical simulation, control and stabilization [SPHINX]
Institut Élie Cartan de Lorraine [IECL]
Systems with physical heterogeneities : inverse problems, numerical simulation, control and stabilization [SPHINX]
Institut Élie Cartan de Lorraine [IECL]
WU, Chi-Ting
Systems with physical heterogeneities : inverse problems, numerical simulation, control and stabilization [SPHINX]
Institut Élie Cartan de Lorraine [IECL]
Systems with physical heterogeneities : inverse problems, numerical simulation, control and stabilization [SPHINX]
Institut Élie Cartan de Lorraine [IECL]
VALEIN, Julie
Systems with physical heterogeneities : inverse problems, numerical simulation, control and stabilization [SPHINX]
Institut Élie Cartan de Lorraine [IECL]
Systems with physical heterogeneities : inverse problems, numerical simulation, control and stabilization [SPHINX]
Institut Élie Cartan de Lorraine [IECL]
WU, Chi-Ting
Systems with physical heterogeneities : inverse problems, numerical simulation, control and stabilization [SPHINX]
Institut Élie Cartan de Lorraine [IECL]
< Réduire
Systems with physical heterogeneities : inverse problems, numerical simulation, control and stabilization [SPHINX]
Institut Élie Cartan de Lorraine [IECL]
Langue
en
Article de revue
Ce document a été publié dans
International Journal of Control. 2019, vol. 92, n° 1, p. 132-144
Taylor & Francis
Résumé en anglais
In this work we study the numerical approximation of the solutions of a class of abstract parabolic time optimal control problems with unbounded control operator. Our main results assert that, provided that the target is ...Lire la suite >
In this work we study the numerical approximation of the solutions of a class of abstract parabolic time optimal control problems with unbounded control operator. Our main results assert that, provided that the target is a closed ball centered at the origin and of positive radius, the optimal time and the optimal controls of the approximate time optimal problems converge (in appropriate norms) to the optimal time and to the optimal controls of the original problem. In order to prove our main theorem, we provide a nonsmooth data error estimate for abstract parabolic systems.< Réduire
Mots clés en anglais
distributed parameter systems
optimal control
numerical approximation AMS subject classifications 93C25
Origine
Importé de halUnités de recherche