Computational helioseismology in the frequency domain: acoustic waves in axisymmetric solar models with flows
GIZON, Laurent
Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research [MPS]
Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research [MPS]
BARUCQ, Hélène
Advanced 3D Numerical Modeling in Geophysics [Magique 3D]
Laboratoire de Mathématiques et de leurs Applications [Pau] [LMAP]
Advanced 3D Numerical Modeling in Geophysics [Magique 3D]
Laboratoire de Mathématiques et de leurs Applications [Pau] [LMAP]
DURUFLÉ, Marc
Institut de Mathématiques de Bordeaux [IMB]
Advanced 3D Numerical Modeling in Geophysics [Magique 3D]
Voir plus >
Institut de Mathématiques de Bordeaux [IMB]
Advanced 3D Numerical Modeling in Geophysics [Magique 3D]
GIZON, Laurent
Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research [MPS]
Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research [MPS]
BARUCQ, Hélène
Advanced 3D Numerical Modeling in Geophysics [Magique 3D]
Laboratoire de Mathématiques et de leurs Applications [Pau] [LMAP]
Advanced 3D Numerical Modeling in Geophysics [Magique 3D]
Laboratoire de Mathématiques et de leurs Applications [Pau] [LMAP]
DURUFLÉ, Marc
Institut de Mathématiques de Bordeaux [IMB]
Advanced 3D Numerical Modeling in Geophysics [Magique 3D]
Institut de Mathématiques de Bordeaux [IMB]
Advanced 3D Numerical Modeling in Geophysics [Magique 3D]
HANSON, Chris
Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research [MPS]
Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research [MPS]
LEGUÈBE, Michael
Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research [MPS]
Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research [MPS]
BIRCH, Aaron
Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research [MPS]
Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research [MPS]
CHABASSIER, Juliette
Advanced 3D Numerical Modeling in Geophysics [Magique 3D]
Laboratoire de Mathématiques et de leurs Applications [Pau] [LMAP]
Advanced 3D Numerical Modeling in Geophysics [Magique 3D]
Laboratoire de Mathématiques et de leurs Applications [Pau] [LMAP]
PAPINI, Emanuele
Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research [MPS]
< Réduire
Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research [MPS]
Langue
en
Article de revue
Ce document a été publié dans
Astronomy and Astrophysics - A&A. 2017-04, vol. 600, p. A35
EDP Sciences
Résumé en anglais
Context. Local helioseismology has so far relied on semi-analytical methods to compute the spatial sensitivity of wave travel times to perturbations in the solar interior. These methods are cumbersome and lack flexibility. ...Lire la suite >
Context. Local helioseismology has so far relied on semi-analytical methods to compute the spatial sensitivity of wave travel times to perturbations in the solar interior. These methods are cumbersome and lack flexibility. Aims. Here we propose a convenient framework for numerically solving the forward problem of time-distance helioseismology in the frequency domain. The fundamental quantity to be computed is the cross-covariance of the seismic wavefield. Methods. We choose sources of wave excitation that enable us to relate the cross-covariance of the oscillations to the Green's function in a straightforward manner. We illustrate the method by considering the 3D acoustic wave equation in an axisymmetric reference solar model, ignoring the effects of gravity on the waves. The symmetry of the background model around the rotation axis implies that the Green's function can be written as a sum of longitudinal Fourier modes, leading to a set of independent 2D problems. We use a high-order finite-element method to solve the 2D wave equation in frequency space. The computation is embarrassingly parallel, with each frequency and each azimuthal order solved independently on a computer cluster. Results. We compute travel-time sensitivity kernels in spherical geometry for flows, sound speed, and density perturbations under the first Born approximation. Convergence tests show that travel times can be computed with a numerical precision better than one millisecond, as required by the most precise travel-time measurements. Conclusions. The method presented here is computationally efficient and will be used to interpret travel-time measurements in order to infer, e.g., the large-scale meridional flow in the solar convection zone. It allows the implementation of (full-waveform) iterative inversions, whereby the axisymmetric background model is updated at each iteration.< Réduire
Mots clés en anglais
solar physics
numerical methods
helioseismology
Origine
Importé de halUnités de recherche