A review of algorithmic enhancements for Benders decomposition
ŞEN, Halil
Reformulations based algorithms for Combinatorial Optimization [Realopt]
Institut de Mathématiques de Bordeaux [IMB]
Reformulations based algorithms for Combinatorial Optimization [Realopt]
Institut de Mathématiques de Bordeaux [IMB]
DETIENNE, Boris
Reformulations based algorithms for Combinatorial Optimization [Realopt]
Institut de Mathématiques de Bordeaux [IMB]
Reformulations based algorithms for Combinatorial Optimization [Realopt]
Institut de Mathématiques de Bordeaux [IMB]
SADYKOV, Ruslan
Reformulations based algorithms for Combinatorial Optimization [Realopt]
Institut de Mathématiques de Bordeaux [IMB]
Voir plus >
Reformulations based algorithms for Combinatorial Optimization [Realopt]
Institut de Mathématiques de Bordeaux [IMB]
ŞEN, Halil
Reformulations based algorithms for Combinatorial Optimization [Realopt]
Institut de Mathématiques de Bordeaux [IMB]
Reformulations based algorithms for Combinatorial Optimization [Realopt]
Institut de Mathématiques de Bordeaux [IMB]
DETIENNE, Boris
Reformulations based algorithms for Combinatorial Optimization [Realopt]
Institut de Mathématiques de Bordeaux [IMB]
Reformulations based algorithms for Combinatorial Optimization [Realopt]
Institut de Mathématiques de Bordeaux [IMB]
SADYKOV, Ruslan
Reformulations based algorithms for Combinatorial Optimization [Realopt]
Institut de Mathématiques de Bordeaux [IMB]
Reformulations based algorithms for Combinatorial Optimization [Realopt]
Institut de Mathématiques de Bordeaux [IMB]
VANDERBECK, François
Institut de Mathématiques de Bordeaux [IMB]
Reformulations based algorithms for Combinatorial Optimization [Realopt]
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
Reformulations based algorithms for Combinatorial Optimization [Realopt]
Langue
en
Communication dans un congrès
Ce document a été publié dans
ISCO 2016 - 4th International Symposium on Combinatorial Optimization, 2016-05-16, Vietri sul Mare. 2016-05-16
Résumé en anglais
In Benders decomposition approach to mixed integer programs , the optimization is carried in two stages: key first-stage decision variables are optimized using a polyhedral approximation of the full-blown problem projection, ...Lire la suite >
In Benders decomposition approach to mixed integer programs , the optimization is carried in two stages: key first-stage decision variables are optimized using a polyhedral approximation of the full-blown problem projection, then a separation problem expressed in the second-stage variables is solved to check if the current first-stage solution is truly feasible, and otherwise, it produces a violated inequality. Such cutting-plane algorithms suffer from several drawbacks and may have very bad convergence rates. We review the battery of approaches that have been proposed in the literature to address these drawbacks and to speed-up the algorithm. Our contribution consists in explaining these techniques in simple terms and unified notations, showing that in several cases, different proposals of the literature boil down to the same key ideas. We classify methods into specific initialization mode, stabilization techniques, strategies to select the separation point, and cut generation strategies. Where available, we highlight numerical benchmarks that have resulted from such enhancements.< Réduire
Mots clés en anglais
Benders Decomposition
Cutting Plane Algorithm
Stabi- lization Techniques
Origine
Importé de halUnités de recherche