An admissibility and asymptotic preserving scheme for systems of conservation laws with source term on 2D unstructured meshes with high-order MOOD reconstruction
BLACHÈRE, Florian
Université de Versailles Saint-Quentin-en-Yvelines [UVSQ]
Laboratoire de Mathématiques de Versailles [LMV]
Université de Nantes [UN]
Laboratoire de Mathématiques Jean Leray [LMJL]
Université de Versailles Saint-Quentin-en-Yvelines [UVSQ]
Laboratoire de Mathématiques de Versailles [LMV]
Université de Nantes [UN]
Laboratoire de Mathématiques Jean Leray [LMJL]
TURPAULT, Rodolphe
Institut de Mathématiques de Bordeaux [IMB]
Institut Polytechnique de Bordeaux [Bordeaux INP]
Institut de Mathématiques de Bordeaux [IMB]
Institut Polytechnique de Bordeaux [Bordeaux INP]
BLACHÈRE, Florian
Université de Versailles Saint-Quentin-en-Yvelines [UVSQ]
Laboratoire de Mathématiques de Versailles [LMV]
Université de Nantes [UN]
Laboratoire de Mathématiques Jean Leray [LMJL]
Université de Versailles Saint-Quentin-en-Yvelines [UVSQ]
Laboratoire de Mathématiques de Versailles [LMV]
Université de Nantes [UN]
Laboratoire de Mathématiques Jean Leray [LMJL]
TURPAULT, Rodolphe
Institut de Mathématiques de Bordeaux [IMB]
Institut Polytechnique de Bordeaux [Bordeaux INP]
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
Institut Polytechnique de Bordeaux [Bordeaux INP]
Langue
en
Article de revue
Ce document a été publié dans
Computer Methods in Applied Mechanics and Engineering. 2017
Elsevier
Résumé en anglais
The aim of this work is to design an explicit finite volume scheme with high-order MOOD reconstruction for specific systems of conservation laws with stiff source terms which degenerate into diffusion equations. We propose ...Lire la suite >
The aim of this work is to design an explicit finite volume scheme with high-order MOOD reconstruction for specific systems of conservation laws with stiff source terms which degenerate into diffusion equations. We propose a general framework to design an asymptotic preserving scheme that is stable and consistent under a classical hyperbolic CFL condition in both hyperbolic and diffusive regimes for any 2D unstructured mesh. Moreover, the developed scheme also preserves the set of admissible states, which is mandatory to conserve physical solutions in stiff configurations. This construction is achieved by using a non-linear scheme as a target scheme for the limit diffusion equation, which gives the form of the global scheme for the full system. The high-order polynomial reconstructions allow to improve the accuracy of the scheme without getting a full high-order scheme. Numerical results are provided to validate the scheme in every regime.< Réduire
Mots clés en anglais
asymptotic-preserving schemes
finite volumes schemes
hyperbolic systems of conservation laws with source terms
MOOD
Project ANR
Capture de l'Asymptotique pour des Systèmes Hyperboliques de Lois de Conservation avec Termes Source - ANR-14-CE25-0001
Centre de Mathématiques Henri Lebesgue : fondements, interactions, applications et Formation - ANR-11-LABX-0020
Centre de Mathématiques Henri Lebesgue : fondements, interactions, applications et Formation - ANR-11-LABX-0020
Origine
Importé de halUnités de recherche