Maximal amenable subalgebras of von Neumann algebras associated with hyperbolic groups
Langue
en
Article de revue
Ce document a été publié dans
Mathematische Annalen. 2017
Springer Verlag
Résumé en anglais
We prove that for any infinite, maximal amenable subgroup H in a hyperbolic group G, the von Neumann subalgebra LH is maximal amenable inside LG. It provides many new, explicit examples of maximal amenable subalgebras in ...Lire la suite >
We prove that for any infinite, maximal amenable subgroup H in a hyperbolic group G, the von Neumann subalgebra LH is maximal amenable inside LG. It provides many new, explicit examples of maximal amenable subalgebras in II 1 factors. We also prove similar maximal amenability results for direct products of relatively hyperbolic groups and orbit equivalence relations arising from measure-preserving actions of such groups.< Réduire
Origine
Importé de halUnités de recherche