Automatic estimation of the noise level function for adaptive blind denoising
SUTOUR, Camille
Institut de Mathématiques de Bordeaux [IMB]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Institut für Numerische und Angewandte Mathematik
Institut de Mathématiques de Bordeaux [IMB]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Institut für Numerische und Angewandte Mathematik
SUTOUR, Camille
Institut de Mathématiques de Bordeaux [IMB]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Institut für Numerische und Angewandte Mathematik
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Institut für Numerische und Angewandte Mathematik
Langue
en
Communication dans un congrès
Ce document a été publié dans
Signal Processing Conference (EUSIPCO), 2016 24th European, Signal Processing Conference (EUSIPCO), 2016 24th European, 24th European Signal Processing Conference (EUSIPCO), 2016, 2016-08-29, Budapest. 2016p. 76 - 80
Résumé en anglais
Image denoising is a fundamental problem in image processing and many powerful algorithms have been developed. However, they often rely on the knowledge of the noise distribution and its parameters. We propose a fully blind ...Lire la suite >
Image denoising is a fundamental problem in image processing and many powerful algorithms have been developed. However, they often rely on the knowledge of the noise distribution and its parameters. We propose a fully blind denoising method that first estimates the noise level function then uses this estimation for automatic denoising. First we perform the non-parametric detection of homogeneous image regions in order to compute a scatterplot of the noise statistics, then we estimate the noise level function with the least absolute deviation estimator. The noise level function parameters are then directly re-injected into an adaptive denoising algorithm based on the non-local means with no prior model fitting. Results show the performance of the noise estimation and denoising methods, and we provide a robust blind denoising tool.< Réduire
Origine
Importé de halUnités de recherche