Improving the Spatial Solution of Electrocardiographic Imaging: A New Regularization Parameter Choice Technique for the Tikhonov Method
CHAMORRO-SERVENT, Judit
Institut de Mathématiques de Bordeaux [IMB]
IHU-LIRYC
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Voir plus >
Institut de Mathématiques de Bordeaux [IMB]
IHU-LIRYC
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
CHAMORRO-SERVENT, Judit
Institut de Mathématiques de Bordeaux [IMB]
IHU-LIRYC
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
IHU-LIRYC
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
COUDIÈRE, Yves
Institut de Mathématiques de Bordeaux [IMB]
IHU-LIRYC
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
IHU-LIRYC
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Langue
en
Communication dans un congrès
Ce document a été publié dans
Lecture Notes in Computer Science, Lecture Notes in Computer Science, 9th International Conference on Functional Imaging and Modelling of the Heart - FIMH 2017, 2017-06-11, Toronto. 2017, vol. 10263, p. 289-300
Springer International Publishing
Résumé en anglais
The electrocardiographic imaging (ECGI) inverse problem is highly ill-posed and regularization is needed to stabilize the problem and to provide a unique solution. When Tikhonov regularization is used, choosing the ...Lire la suite >
The electrocardiographic imaging (ECGI) inverse problem is highly ill-posed and regularization is needed to stabilize the problem and to provide a unique solution. When Tikhonov regularization is used, choosing the regulariza-tion parameter is a challenging problem. Mathematically, a suitable value for this parameter needs to fulfill the Discrete Picard Condition (DPC). In this study, we propose two new methods to choose the regularization parameter for ECGI with the Tikhonov method: i) a new automatic technique based on the DPC, which we named ADPC, and ii) the U-curve method, introduced in other fields for cases where the well-known L-curve method fails or provides an over-regularized solution , and not tested yet in ECGI. We calculated the Tikhonov solution with the ADPC and U-curve parameters for in-silico data, and we compared them with the solution obtained with other automatic regularization choice methods widely used for the ECGI problem (CRESO and L-curve). ADPC provided a better correlation coefficient of the potentials in time and of the activation time (AT) maps, while less error was present in most of the cases compared to the other methods. Furthermore, we found that for in-silico spiral wave data, the L-curve method over-regularized the solution and the AT maps could not be solved for some of these cases. U-curve and ADPC provided the best solutions in these last cases.< Réduire
Mots clés en anglais
inverse problem
regularization
electrocardiographic imaging
po- tentials
Tikhonov regularization
ill-posed problems
discrete picard condition
u-curve
Project ANR
L'Institut de Rythmologie et modélisation Cardiaque - ANR-10-IAHU-0004
Origine
Importé de halUnités de recherche