Piecewise Optimal Trajectories of Observer for Bearings-Only Tracking by Quantization
ZHANG, Huilong
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
DUFOUR, François
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Institut Polytechnique de Bordeaux [Bordeaux INP]
Voir plus >
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Institut Polytechnique de Bordeaux [Bordeaux INP]
ZHANG, Huilong
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
DUFOUR, François
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Institut Polytechnique de Bordeaux [Bordeaux INP]
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Institut Polytechnique de Bordeaux [Bordeaux INP]
Langue
en
Communication dans un congrès
Ce document a été publié dans
20th International Conference on Information Fusion, 20th International Conference on Information Fusion, 20th International Conference on Information Fusion, 2017-07-10, Xi'an. 2017-07p. 1458-1464
Résumé en anglais
We investigate the problem of determining the trajectory that an observer should follow to be able to accurately track a target in a bearings-only measurements context. We assume that the target’s motion is uniform and ...Lire la suite >
We investigate the problem of determining the trajectory that an observer should follow to be able to accurately track a target in a bearings-only measurements context. We assume that the target’s motion is uniform and that the measurements are corrupted by an additive Gaussian whitenoise. Though, in theory, this process is observable if the observer maneuvers with turns or accelerations, the quality of the resulting estimation strongly depends on the trajectory chosen by the observer. In this paper, we present a numerical method to compute a trajectory of a maneuvering observer with the objective of maximizing the cumulative sum of bearing rates between the target and observer. Our approach is based on the piecewise stochastic control of a finite-horizon Markov process. A quantization method is applied to transform the problem into a discrete domain. We show that this transformation allows for a numerically tractable solution able to accurately track the target in a number of practical scenarios.< Réduire
Mots clés en anglais
Non linear filtering
Quantization
Bearingsonly tracking
Stochastic optimal control
Underwater acoustic warfare
Origine
Importé de halUnités de recherche