Atmospheric radiation boundary conditions for high frequency waves in time-distance helioseismology
FOURNIER, Damien
Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research [MPS]
Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research [MPS]
HANSON, Chris S.
Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research [MPS]
Voir plus >
Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research [MPS]
FOURNIER, Damien
Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research [MPS]
Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research [MPS]
HANSON, Chris S.
Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research [MPS]
Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research [MPS]
GIZON, Laurent
Institut für Astrophysik [Göttingen]
Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research [MPS]
New York University [Abu Dhabi]
Institut für Astrophysik [Göttingen]
Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research [MPS]
New York University [Abu Dhabi]
BARUCQ, Hélène
Advanced 3D Numerical Modeling in Geophysics [Magique 3D]
Université de Pau et des Pays de l'Adour [UPPA]
Advanced 3D Numerical Modeling in Geophysics [Magique 3D]
Université de Pau et des Pays de l'Adour [UPPA]
DURUFLÉ, Marc
Advanced 3D Numerical Modeling in Geophysics [Magique 3D]
Institut de Mathématiques de Bordeaux [IMB]
< Réduire
Advanced 3D Numerical Modeling in Geophysics [Magique 3D]
Institut de Mathématiques de Bordeaux [IMB]
Langue
en
Article de revue
Ce document a été publié dans
Astronomy and Astrophysics - A&A. 2017, vol. 608, n° A109, p. 1-9
EDP Sciences
Résumé en anglais
The temporal covariance between seismic waves measured at two locations on the solar surface is the fundamental observable in time-distance helioseismology. Above the acoustic cutoff frequency (∼5.3 mHz), waves are not ...Lire la suite >
The temporal covariance between seismic waves measured at two locations on the solar surface is the fundamental observable in time-distance helioseismology. Above the acoustic cutoff frequency (∼5.3 mHz), waves are not trapped in the solar interior and the covariance function can be used to probe the upper atmosphere. We wish to implement appropriate radiative boundary conditions for computing the propagation of high-frequency waves in the solar atmosphere. We consider the radiative boundary conditions recently developed by Barucq et al. (2017) for atmospheres in which sound-speed is constant and density decreases exponentially with radius. We compute the cross-covariance function using a finite element method in spherical geometry and in the frequency domain. The ratio between first-and second-skip amplitudes in the time-distance diagram is used as a diagnostic to compare boundary conditions and to compare with observations. We find that a boundary condition applied 500 km above the photosphere and derived under the approximation of small angles of incidence accurately reproduces the 'infinite atmosphere' solution for high-frequency waves. When the radiative boundary condition is applied 2 Mm above the photosphere, we find that the choice of atmospheric model affects the time-distance diagram. In particular, the time-distance diagram exhibits double-ridge structure when using a VAL atmospheric model.< Réduire
Origine
Importé de halUnités de recherche