Weyl formula for the negative dissipative eigenvalues of Maxwell's equations
Langue
en
Article de revue
Ce document a été publié dans
Archiv der Mathematik. 2018-02-20, vol. 110, n° 2, p. 183-195
Springer Verlag
Résumé en anglais
Let $V(t) = e^{tG_b},\: t \geq 0,$ be the semigroup generated by Maxwell's equations in an exterior domain $\Omega \subset {\mathbb R}^3$ with dissipative boundary condition $E_{tan}- \gamma(x) (\nu \wedge B_{tan}) = 0, ...Lire la suite >
Let $V(t) = e^{tG_b},\: t \geq 0,$ be the semigroup generated by Maxwell's equations in an exterior domain $\Omega \subset {\mathbb R}^3$ with dissipative boundary condition $E_{tan}- \gamma(x) (\nu \wedge B_{tan}) = 0, \gamma(x) > 0, \forall x \in \Gamma = \partial \Omega.$ We study the case when $\Omega = \{x \in {\mathbb R^3}:\: |x| > 1\}$ and $\gamma \neq 1$ is a constant. We establish a Weyl formula for the counting function of the negative real eigenvalues of $G_b.$< Réduire
Origine
Importé de halUnités de recherche