Cauchy problem for the nonlinear Schrödinger equation coupled with the Maxwell equation
COLIN, Mathieu
Institut Polytechnique de Bordeaux [Bordeaux INP]
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Institut de Mathématiques de Bordeaux [IMB]
Institut Polytechnique de Bordeaux [Bordeaux INP]
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Institut de Mathématiques de Bordeaux [IMB]
COLIN, Mathieu
Institut Polytechnique de Bordeaux [Bordeaux INP]
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Institut de Mathématiques de Bordeaux [IMB]
< Réduire
Institut Polytechnique de Bordeaux [Bordeaux INP]
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Institut de Mathématiques de Bordeaux [IMB]
Langue
en
Document de travail - Pré-publication
Résumé en anglais
In this paper, we study the nonlinear Schrödinger equation coupled with the Maxwell equation. Using energy methods, we obtain a local existence result for the Cauchy problem.
In this paper, we study the nonlinear Schrödinger equation coupled with the Maxwell equation. Using energy methods, we obtain a local existence result for the Cauchy problem.< Réduire
Mots clés en anglais
Schrödinger-Maxwell system
Cauchy problem
Symmetric hyperbolic system
Energy method
Origine
Importé de halUnités de recherche