Diffusion and inpainting of reflectance and height LiDAR orthoimages
BIASUTTI, Pierre
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Méthodes d'Analyses pour le Traitement d'Images et la Stéréorestitution [MATIS]
Institut de Mathématiques de Bordeaux [IMB]
Voir plus >
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Méthodes d'Analyses pour le Traitement d'Images et la Stéréorestitution [MATIS]
Institut de Mathématiques de Bordeaux [IMB]
BIASUTTI, Pierre
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Méthodes d'Analyses pour le Traitement d'Images et la Stéréorestitution [MATIS]
Institut de Mathématiques de Bordeaux [IMB]
< Réduire
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Méthodes d'Analyses pour le Traitement d'Images et la Stéréorestitution [MATIS]
Institut de Mathématiques de Bordeaux [IMB]
Langue
en
Article de revue
Ce document a été publié dans
Computer Vision and Image Understanding. 2018-11-24
Elsevier
Résumé en anglais
This paper presents a fully automatic framework for the generation of so-called LiDAR orthoimages (i.e. 2D raster maps of the reflectance and height LiDAR samples) from ground-level LiDAR scans. Beyond the Digital Surface ...Lire la suite >
This paper presents a fully automatic framework for the generation of so-called LiDAR orthoimages (i.e. 2D raster maps of the reflectance and height LiDAR samples) from ground-level LiDAR scans. Beyond the Digital Surface Model (DSM or heightmap) provided by the height orthoimage, the pro- posed method cost-effectively generates a reflectance channel that is easily interpretable by human operators without relying on any optical acquisition, calibration and registration. Moreover, it com- monly achieves very high resolutions (1cm2 per pixel), thanks to the typical sampling density of static or mobile LiDAR scans.Compared to orthoimages generated from aerial datasets, the proposed LiDAR orthoimages are ac- quired from the ground level and thus do not suffer occlusions from hovering objects (trees, tunnels, bridges ...), enabling their use in a number of urban applications such as road network monitoring and management, as well as precise mapping of the public space e.g. for accessibility applications or management of underground networks.Its generation and usability however faces two issues : (i) the inhomogeneous sampling density of LiDAR point clouds and (ii) the presence of masked areas (holes) behind occluders, which include, in a urban context, cars, tree trunks, poles, pedestrians... (i) is addressed by first projecting the point cloud on a 2D-pixel grid so as to generate sparse and noisy reflectance and height images from which dense images estimated using a joint anisotropic diffusion of the height and reflectance channels. (ii) LiDAR shadow areas are detected by analysing the diffusion results so that they can be inpainted using an examplar-based method, guided by an alignment prior.Results on real mobile and static acquisition data demonstrate the effectiveness of the proposed pipeline in generating a very high resolution LiDAR orthoimage of reflectance and height while filling holes of various sizes in a visually satisfying way.< Réduire
Mots clés en anglais
inpainting
diffusion
Orthophoto
Orthoimage
lidar
mms
variational
Origine
Importé de halUnités de recherche