Rush-Larsen time-stepping methods of high order for stiff problems in cardiac electrophysiology
COUDIÈRE, Yves
IHU-LIRYC
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
IHU-LIRYC
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
DOUANLA LONTSI, Charlie
IHU-LIRYC
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
IHU-LIRYC
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
COUDIÈRE, Yves
IHU-LIRYC
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
IHU-LIRYC
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
DOUANLA LONTSI, Charlie
IHU-LIRYC
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
< Réduire
IHU-LIRYC
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
Langue
en
Article de revue
Ce document a été publié dans
Electronic Transactions on Numerical Analysis. 2020-07-14, vol. 55, p. 342-357
Kent State University Library
Résumé en anglais
To address the issues of stability and accuracy for reaction-diffusion equations, the development of high order and stable time-stepping methods is necessary. This is particularly true in the context of cardiac ...Lire la suite >
To address the issues of stability and accuracy for reaction-diffusion equations, the development of high order and stable time-stepping methods is necessary. This is particularly true in the context of cardiac electrophysiology, where reaction-diffusion equations are coupled with stiff ODE systems. Many research have been led in that way in the past 15 years concerning implicit-explicit methods and exponential integrators. In 2009, Perego and Veneziani proposed an innovative time-stepping method of order 2. In this paper we present the extension of this method to the orders 3 and 4 and introduce the Rush-Larsen schemes of order k (shortly denoted RL_k). The RL_k schemes are explicit multistep exponential integrators. They display a simple general formulation and an easy implementation. The RL_k schemes are shown to be stable under perturbation and convergent of order k. Their Dahlquist stability analysis is performed. They have a very large stability domain provided that the stabilizer associated with the method captures well enough the stiff modes of the problem. The RL_k method is numerically studied as applied to the membrane equation in cardiac electrophysiology. The RL k schemes are shown to be stable under perturbation and convergent oforder k. Their Dahlquist stability analysis is performed. They have a very large stability domain provided that the stabilizer associated with the method captures well enough the stiff modes of the problem. The RL k method is numerically studied as applied to the membrane equation in cardiac electrophysiology.< Réduire
Mots clés en anglais
explicit high-order multistep methods
stiff equations
stability and convergence
exponential integrators
Dahlquist stability
Project ANR
Modèles numériques haute résolution de l'électrophysiologie cardiaque - ANR-13-MONU-0004
Origine
Importé de halUnités de recherche