Designing a Two-Echelon Distribution Network under Demand Uncertainty
BEN MOHAMED, Imen
Reformulations based algorithms for Combinatorial Optimization [Realopt]
Kedge Business School [Talence]
Institut de Mathématiques de Bordeaux [IMB]
Reformulations based algorithms for Combinatorial Optimization [Realopt]
Kedge Business School [Talence]
Institut de Mathématiques de Bordeaux [IMB]
KLIBI, Walid
Centre Interuniversitaire de Recherche sur les Réseaux d'Entreprise, la Logistique et le Transport [CIRRELT]
Kedge Business School [Talence]
Centre Interuniversitaire de Recherche sur les Réseaux d'Entreprise, la Logistique et le Transport [CIRRELT]
Kedge Business School [Talence]
VANDERBECK, François
Institut de Mathématiques de Bordeaux [IMB]
Reformulations based algorithms for Combinatorial Optimization [Realopt]
Institut de Mathématiques de Bordeaux [IMB]
Reformulations based algorithms for Combinatorial Optimization [Realopt]
BEN MOHAMED, Imen
Reformulations based algorithms for Combinatorial Optimization [Realopt]
Kedge Business School [Talence]
Institut de Mathématiques de Bordeaux [IMB]
Reformulations based algorithms for Combinatorial Optimization [Realopt]
Kedge Business School [Talence]
Institut de Mathématiques de Bordeaux [IMB]
KLIBI, Walid
Centre Interuniversitaire de Recherche sur les Réseaux d'Entreprise, la Logistique et le Transport [CIRRELT]
Kedge Business School [Talence]
Centre Interuniversitaire de Recherche sur les Réseaux d'Entreprise, la Logistique et le Transport [CIRRELT]
Kedge Business School [Talence]
VANDERBECK, François
Institut de Mathématiques de Bordeaux [IMB]
Reformulations based algorithms for Combinatorial Optimization [Realopt]
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
Reformulations based algorithms for Combinatorial Optimization [Realopt]
Langue
en
Article de revue
Ce document a été publié dans
European Journal of Operational Research. 2019, vol. 280, n° 1, p. 102-123
Elsevier
Date de soutenance
2019Résumé en anglais
This paper proposes a comprehensive methodology for the stochastic multi-period two-echelon distribution network design problem (2E-DDP) where product flows to ship-to-points are directed from an upper layer of primary ...Lire la suite >
This paper proposes a comprehensive methodology for the stochastic multi-period two-echelon distribution network design problem (2E-DDP) where product flows to ship-to-points are directed from an upper layer of primary warehouses to distribution platforms (DPs) before being transported to the ship-to-points. A temporal hierarchy characterizes the design level dealing with DP location and capacity decisions, as well as the operational level involving transportation decisions as origin-destination flows. These design decisions must be calibrated to minimize the expected distribution cost associated with the two-echelon transportation schema on this network under stochastic demand. We consider a multi-period planning horizon where demand varies dynamically from one planning period to the next. Thus, the design of the two-echelon distribution network under uncertain customer demand gives rise to a complex multi-stage decisional problem. Given the strategic structure of the problem, we introduce alternative modeling approaches based on two-stage stochastic programming with recourse. We solve the resulting models using a Benders decomposition approach. The size of the scenario set is tuned using the sample average approximation (SAA) approach. Then, a scenario-based evaluation procedure is introduced to post-evaluate the design solutions obtained. We conduct extensive computational experiments based on several types of instances to validate the proposed models and assess the efficiency of the solution approaches. The evaluation of the quality of the stochastic solution underlines the impact of uncertainty in the two-echelon distribution network design problem (2E-DDP).< Réduire
Mots clés en anglais
Location models
Multi-period
Uncertainty
Supply chain management
Two-echelon Distribution Network Design
Origine
Importé de halUnités de recherche