Cycle classes and the syntomic regulator
Langue
en
Article de revue
Ce document a été publié dans
Algebra & Number Theory. 2013, vol. 7, n° 3, p. 533-566
Mathematical Sciences Publishers
Résumé en anglais
Let $V=Spec(R)$ and $R$ be a complete discrete valuation ring of mixed characteristic $(0,p)$. For any flat $R$-scheme $X$ we prove the compatibility of the de Rham fundamental class of the generic fiber and the rigid ...Lire la suite >
Let $V=Spec(R)$ and $R$ be a complete discrete valuation ring of mixed characteristic $(0,p)$. For any flat $R$-scheme $X$ we prove the compatibility of the de Rham fundamental class of the generic fiber and the rigid fundamental class of the special fiber. We use this result to construct a syntomic regulator map $r:CH^i(X/V,2i-n)\to H^n_{syn}(X,i)$, when $X$ is smooth over $V$, with values on the syntomic cohomology defined by A. Besser. Motivated by the previous result we also prove some of the Bloch-Ogus axioms for the syntomic cohomology theory, but viewed as an absolute cohomology theory.< Réduire
Origine
Importé de halUnités de recherche