Semistable reduction of modular curves associated with maximal subgroups in prime level
Idioma
en
Article de revue
Este ítem está publicado en
Doc.Math. 2021, vol. 26, p. 231
Resumen en inglés
We complete the description of semistable models for modular curves associated with maximal subgroups of $\mathrm{GL}_2 ({\mathbb F}_p )$ (for $p$ any prime, $p>5$). That is, in the new cases of non-split Cartan modular ...Leer más >
We complete the description of semistable models for modular curves associated with maximal subgroups of $\mathrm{GL}_2 ({\mathbb F}_p )$ (for $p$ any prime, $p>5$). That is, in the new cases of non-split Cartan modular curves and exceptional subgroups, we identify the irreducible components and singularities of the reduction mod $p$, and the complete local rings at the singularities. We review the case of split Cartan modular curves. This description suffices for computing the group of connected components of the fibre at $p$ of the Néron model of the Jacobian.< Leer menos
Palabras clave en inglés
modular
singularity
Cartan
exceptional
fibre
stability
11G18
11G20
14G35 (sec- ondary)
Orígen
Importado de HalCentros de investigación