Quantitative mathematical modeling of clinical brain metastasis dynamics in non-small cell lung cancer
BOYER, Arnaud
Simulation and Modeling of Adaptive Response for Therapeutics in Cancer [SMARTc]
Service d'oncologie multidisciplinaire innovations thérapeutiques [Hôpital Nord - APHM]
Voir plus >
Simulation and Modeling of Adaptive Response for Therapeutics in Cancer [SMARTc]
Service d'oncologie multidisciplinaire innovations thérapeutiques [Hôpital Nord - APHM]
BOYER, Arnaud
Simulation and Modeling of Adaptive Response for Therapeutics in Cancer [SMARTc]
Service d'oncologie multidisciplinaire innovations thérapeutiques [Hôpital Nord - APHM]
Simulation and Modeling of Adaptive Response for Therapeutics in Cancer [SMARTc]
Service d'oncologie multidisciplinaire innovations thérapeutiques [Hôpital Nord - APHM]
TOMASINI, Pascale
Service d'oncologie multidisciplinaire innovations thérapeutiques [Hôpital Nord - APHM]
Service d'oncologie multidisciplinaire innovations thérapeutiques [Hôpital Nord - APHM]
BARBOLOSI, Dominique
Simulation and Modeling of Adaptive Response for Therapeutics in Cancer [SMARTc]
Simulation and Modeling of Adaptive Response for Therapeutics in Cancer [SMARTc]
BARLESI, Fabrice
Simulation and Modeling of Adaptive Response for Therapeutics in Cancer [SMARTc]
Service d'oncologie multidisciplinaire innovations thérapeutiques [Hôpital Nord - APHM]
Centre de Recherche en Cancérologie de Marseille [CRCM]
Simulation and Modeling of Adaptive Response for Therapeutics in Cancer [SMARTc]
Service d'oncologie multidisciplinaire innovations thérapeutiques [Hôpital Nord - APHM]
Centre de Recherche en Cancérologie de Marseille [CRCM]
BENZEKRY, Sébastien
Modélisation Mathématique pour l'Oncologie [MONC]
Institut de Mathématiques de Bordeaux [IMB]
< Réduire
Modélisation Mathématique pour l'Oncologie [MONC]
Institut de Mathématiques de Bordeaux [IMB]
Langue
en
Article de revue
Ce document a été publié dans
Scientific Reports. 2019-09, vol. 9, n° 1
Nature Publishing Group
Résumé en anglais
Brain metastases (BMs) are the largest disabling site for non-small cell lung cancers, but are only visible when sizeable. Individualized prediction of the BM risk and extent is a major challenge for therapeutic decision. ...Lire la suite >
Brain metastases (BMs) are the largest disabling site for non-small cell lung cancers, but are only visible when sizeable. Individualized prediction of the BM risk and extent is a major challenge for therapeutic decision. This study assesses mechanistic models of BM apparition and growth against clinical imaging data.We implemented a quantitative computational method to confront biologicallyinformed mathematical models to clinical data of BMs. Primary tumor growth parameters were estimated from size at diagnosis and histology. Metastatic dissemination and growth parameters were fitted to either population data of BM probability (n=183 patients) or longitudinal measurements of number and size of visible BMs (63 size measurements in two patients). Pre-clinical phases from first cancer cell to detection were estimated to 2.1-5.3 years. A model featuringdormancy was best able to describe the longitudinal data, as well as BM probability as a function of primary tumor size at diagnosis. It predicted first appearance of BMs at 14-19 months pre-diagnosis. Model-informed predictions of invisible cerebral disease burden could be used to inform therapeutic intervention.< Réduire
Origine
Importé de halUnités de recherche