Variational Osmosis for Non-linear Image Fusion
Langue
en
Article de revue
Ce document a été publié dans
IEEE Transactions on Image Processing. 2020, vol. 29, p. 5507-5516
Institute of Electrical and Electronics Engineers
Résumé en anglais
We propose a new variational model for nonlinear image fusion. Our approach incorporates the osmosis model proposed in Vogel et al. (2013) and Weickert et al. (2013) as an energy term in a variational model. The osmosis ...Lire la suite >
We propose a new variational model for nonlinear image fusion. Our approach incorporates the osmosis model proposed in Vogel et al. (2013) and Weickert et al. (2013) as an energy term in a variational model. The osmosis energy is known to realize visually plausible image data fusion. As a consequence, our method is invariant to multiplicative brightness changes. On the practical side, it requires minimal supervision and parameter tuning and can encode prior information on the structure of the images to be fused. We develop a primal-dual algorithm for solving this new image fusion model and we apply the resulting minimisation scheme to multi-modal image fusion for face fusion, colour transfer and some cultural heritage conservation challenges. Visual comparison to state-of-the-art proves the quality and flexibility of our method.< Réduire
Mots clés en anglais
Image fusion
Osmosis filtering
Cultural heritage imaging
Primal-dual algorithm
Non-convex optimisation
Projet Européen
Nonlocal Methods for Arbitrary Data Sources
Project ANR
Generalized Optimal Transport Models for Image processing - ANR-16-CE33-0010
Repenser la post-production d'archives avec des méthodes à patch, variationnelles et par apprentissage - ANR-19-CE23-0027
Repenser la post-production d'archives avec des méthodes à patch, variationnelles et par apprentissage - ANR-19-CE23-0027
Origine
Importé de halUnités de recherche