Localized smoothing for the Navier-Stokes equations and concentration of critical norms near singularities
PRANGE, Christophe
Institut de Mathématiques de Bordeaux [IMB]
Centre National de la Recherche Scientifique [CNRS]
Institut de Mathématiques de Bordeaux [IMB]
Centre National de la Recherche Scientifique [CNRS]
PRANGE, Christophe
Institut de Mathématiques de Bordeaux [IMB]
Centre National de la Recherche Scientifique [CNRS]
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
Centre National de la Recherche Scientifique [CNRS]
Langue
en
Article de revue
Ce document a été publié dans
Archive for Rational Mechanics and Analysis. 2020-03-07
Springer Verlag
Résumé en anglais
This paper is concerned with two dual aspects of the regularity question of the Navier-Stokes equations. First, we prove a local in time localized smoothing effect for local energy solutions. More precisely, if the initial ...Lire la suite >
This paper is concerned with two dual aspects of the regularity question of the Navier-Stokes equations. First, we prove a local in time localized smoothing effect for local energy solutions. More precisely, if the initial data restricted to the unit ball belongs to the scale-critical space $L^3$, then the solution is locally smooth in space for some short time, which is quantified. This builds upon the work of Jia and \v{S}ver\'{a}k, who considered the subcritical case. Second, we apply these localized smoothing estimates to prove a concentration phenomenon near a possible Type I blow-up. Namely, we show if $(0, T^*)$ is a singular point then $$\|u(\cdot,t)\|_{L^{3}(B_{R}(0))}\geq \gamma_{univ},\qquad R=O(\sqrt{T^*-t}).$$ This result is inspired by and improves concentration results established by Li, Ozawa, and Wang and Maekawa, Miura, and Prange. We also extend our results to other critical spaces, namely $L^{3,\infty}$ and the Besov space $\dot B^{-1+\frac3p}_{p,\infty}$, $p\in(3,\infty)$.< Réduire
Origine
Importé de halUnités de recherche