Almost Everywhere Convergence of Prolate Spheroidal Series
Langue
en
Article de revue
Ce document a été publié dans
Illinois Journal of Mathematics. 2020, vol. 64, p. 467-479
Résumé en anglais
In this paper, we show that the expansions of functions from $L^p$-Paley-Wiener type spaces in terms of the prolate spheroidal wave functions converge almost everywhere for $1<p<\infty$, even in the cases when they might ...Lire la suite >
In this paper, we show that the expansions of functions from $L^p$-Paley-Wiener type spaces in terms of the prolate spheroidal wave functions converge almost everywhere for $1<p<\infty$, even in the cases when they might not converge in $L^p$-norm. We thereby consider the classical Paley-Wiener spaces $PW_c^p\subset L^p(\R)$ of functions whose Fourier transform is supported in $[-c,c]$ and Paley-Wiener like spaces $B_{\al,c}^p\subset L^p(0,\infty)$ of functions whose Hankel transform $\H^\al$ is supported in $[0,c]$.As a side product, we show the continuity of the projection operator $P_c^\al f:=\H^\al(\chi_{[0,c]}\cdot \H^\al f)$ from $L^p(0,\infty)$ to $L^q(0,\infty)$, $1<p\leq q<\infty$.< Réduire
Mots clés en anglais
Prolate spheroidal wave functions
almost everywhere convergence
Paley-Wiener type spaces
Hankel transform
spherical Bessel functions 2010 MSC: 42B10
42C10
44A15
Origine
Importé de halUnités de recherche