Kloosterman paths of prime powers moduli, II
Idioma
en
Article de revue
Este ítem está publicado en
Bulletin de la société mathématique de France. 2020, vol. 148, n° 1, p. 173-188
Société Mathématique de France
Fecha de defensa
2020Resumen en inglés
G. Ricotta and E. Royer (2018) have recently proved that the polygonal paths joining the partial sums of the normalized classical Kloosterman sums $S(a,b;p^n)/p^(n/2) converge in law in the Banach space of complex-valued ...Leer más >
G. Ricotta and E. Royer (2018) have recently proved that the polygonal paths joining the partial sums of the normalized classical Kloosterman sums $S(a,b;p^n)/p^(n/2) converge in law in the Banach space of complex-valued continuous function on [0,1] to an explicit random Fourier series as (a,b) varies over (Z/p^nZ)^\times\times(Z/p^nZ)^\times, p tends to infinity among the odd prime numbers and n>=2 is a fixed integer. This is the analogue of the result obtained by E. Kowalski and W. Sawin (2016) in the prime moduli case. The purpose of this work is to prove a convergence law in this Banach space as only a varies over (Z/p^nZ)^\times, p tends to infinity among the odd prime numbers and n>=31 is a fixed integer.< Leer menos
Palabras clave en inglés
Kloosterman sums
moments
probability in Banach spaces
Proyecto ANR
Familles de fonctions L: analyse, interactions, résultats effectifs - ANR-17-CE40-0012
Orígen
Importado de HalCentros de investigación