Fourier coefficients of GL(N) automorphic forms in arithmetic progressions
KOWALSKI, Emmanuel
Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] [ETH Zürich]
Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] [ETH Zürich]
KOWALSKI, Emmanuel
Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] [ETH Zürich]
< Réduire
Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] [ETH Zürich]
Langue
en
Article de revue
Ce document a été publié dans
Geometric And Functional Analysis. 2014-08-01, vol. 24, n° 4, p. 1229-1297
Résumé en anglais
We show that the multiple divisor functions of integers in invertible residue classes modulo a prime number, as well as the Fourier coefficients of GL(N) Maass cusp forms for all N larger than 2, satisfy a central limit ...Lire la suite >
We show that the multiple divisor functions of integers in invertible residue classes modulo a prime number, as well as the Fourier coefficients of GL(N) Maass cusp forms for all N larger than 2, satisfy a central limit theorem in a suitable range, generalizing the case N=2 treated by E. Fouvry, S. Ganguly, E. Kowalski and P. Michel. Such universal Gaussian behaviour relies on a deep equidistribution result of products of hyper-Kloosterman sums.< Réduire
Origine
Importé de halUnités de recherche