Norm relations and computational problems in number fields
PAGE, Aurel
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Institut National de Recherche en Informatique et en Automatique [Inria]
Analyse cryptographique et arithmétique [CANARI]
< Leer menos
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Institut National de Recherche en Informatique et en Automatique [Inria]
Analyse cryptographique et arithmétique [CANARI]
Idioma
en
Article de revue
Este ítem está publicado en
Journal of the London Mathematical Society. 2022-06, vol. 105, n° 4, p. 2373-2414
London Mathematical Society ; Wiley
Resumen en inglés
For a finite group $G$, we introduce a generalization of norm relations in the group algebra $\mathbb{Q}[G]$. We give necessary and sufficient criteria for the existence of such relations and apply them to obtain relations ...Leer más >
For a finite group $G$, we introduce a generalization of norm relations in the group algebra $\mathbb{Q}[G]$. We give necessary and sufficient criteria for the existence of such relations and apply them to obtain relations between the arithmetic invariants of the subfields of an algebraic number field with Galois group $G$. On the algorithm side this leads to subfield based algorithms for computing rings of integers, $S$-unit groups and class groups. For the $S$-unit group computation this yields a polynomial-time reduction to the corresponding problem in subfields. We compute class groups of large number fields under GRH, and new unconditional values of class numbers of cyclotomic fields.< Leer menos
Proyecto ANR
Cryptographie, isogenies et variété abéliennes surpuissantes - ANR-19-CE48-0008
Orígen
Importado de HalCentros de investigación