On the linear extension property for interpolating sequences
Langue
en
Document de travail - Pré-publication
Résumé en anglais
Let $S$ be a sequence of points in $\Omega ,$ where $\Omega $ is the unit ball or the unit polydisc in ${\mathbb{C}}^{n}.$ Denote $H^{p}$($\Omega $) the Hardy space of $\Omega .$ Suppose that $S$ is $H^{p}$ interpolating ...Lire la suite >
Let $S$ be a sequence of points in $\Omega ,$ where $\Omega $ is the unit ball or the unit polydisc in ${\mathbb{C}}^{n}.$ Denote $H^{p}$($\Omega $) the Hardy space of $\Omega .$ Suppose that $S$ is $H^{p}$ interpolating with $p\geq 2.$ Then $S$ has the bounded linear extension property. The same is true for the Bergman spaces of the ball by use of the "Subordination Lemma".< Réduire
Origine
Importé de halUnités de recherche