Fast computation of elliptic curve isogenies in characteristic two
CARUSO, Xavier
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
CARUSO, Xavier
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Langue
en
Article de revue
Ce document a été publié dans
Journal of the London Mathematical Society. 2021-11, vol. 104, n° 4, p. 1901-1929
London Mathematical Society ; Wiley
Résumé en anglais
We propose an algorithm that calculates isogenies between elliptic curves defined over an extension $K$ of $\mathbb{Q}_2$. It consists in efficiently solving with a logarithmic loss of $2$-adic precision the first order ...Lire la suite >
We propose an algorithm that calculates isogenies between elliptic curves defined over an extension $K$ of $\mathbb{Q}_2$. It consists in efficiently solving with a logarithmic loss of $2$-adic precision the first order differential equation satisfied by the isogeny. We give some applications, especially computing over finite fields of characteristic 2 isogenies of elliptic curves and irreducible polynomials, both in quasi-linear time in the degree.< Réduire
Project ANR
Correspondance de Langlands p-adique : une approche constructive et algorithmique - ANR-18-CE40-0026
Centre de Mathématiques Henri Lebesgue : fondements, interactions, applications et Formation - ANR-11-LABX-0020
Centre de Mathématiques Henri Lebesgue : fondements, interactions, applications et Formation - ANR-11-LABX-0020
Origine
Importé de halUnités de recherche