Iterative aggregation and disaggregation algorithm for pseudo-polynomial network flow models with side constraints
CLAUTIAUX, François
Reformulations based algorithms for Combinatorial Optimization [Realopt]
Institut de Mathématiques de Bordeaux [IMB]
Reformulations based algorithms for Combinatorial Optimization [Realopt]
Institut de Mathématiques de Bordeaux [IMB]
HANAFI, Said
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Voir plus >
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
CLAUTIAUX, François
Reformulations based algorithms for Combinatorial Optimization [Realopt]
Institut de Mathématiques de Bordeaux [IMB]
Reformulations based algorithms for Combinatorial Optimization [Realopt]
Institut de Mathématiques de Bordeaux [IMB]
HANAFI, Said
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
Laboratoire d'Automatique, de Mécanique et d'Informatique industrielles et Humaines - UMR 8201 [LAMIH]
VOGE, Marie-Emilie
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
< Réduire
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Langue
en
Article de revue
Ce document a été publié dans
European Journal of Operational Research. 2017, vol. 258, p. 467 - 477
Elsevier
Résumé en anglais
This paper develops a general solution framework based on aggregation techniques to solve NP-Hard problems that can be formulated as a circulation model with specific side constraints. The size of the extended Mixed Integer ...Lire la suite >
This paper develops a general solution framework based on aggregation techniques to solve NP-Hard problems that can be formulated as a circulation model with specific side constraints. The size of the extended Mixed Integer Linear Programming formulation is generally pseudo-polynomial. To efficiently solve exactly these large scale models, we propose a new iterative aggregation and disaggregation algorithm. At each iteration, it projects the original model onto an aggregated one, producing an approximate model. The process iterates to refine the current aggregated model until the opti-mality is proved. The computational experiments on two hard optimization problems (a variant of the vehicle routing problem and the cutting-stock problem) show that a generic implementation of the proposed framework allows us to out-perform previous known methods.< Réduire
Mots clés en anglais
Integer programming
Combinatorial optimization
Aggregation of integer models
Arc-flow integer models
Aggregation of integer
Origine
Importé de halUnités de recherche