CONCENTRATION ESTIMATES FOR FINITE EXPANSIONS OF SPHERICAL HARMONICS ON TWO-POINT HOMOGENEOUS SPACES VIA THE LARGE SIEVE PRINCIPLE
Langue
en
Article de revue
Ce document a été publié dans
Sampling Theory, Signal Processing, and Data Analysis. 2021, vol. 19, p. 9
Résumé en anglais
We study the concentration problem on compact two-point homogeneous spaces of finite expansions of eigenfunctions of the Laplace-Beltrami operator using large sieve methods. We derive upper bounds for concentration in terms ...Lire la suite >
We study the concentration problem on compact two-point homogeneous spaces of finite expansions of eigenfunctions of the Laplace-Beltrami operator using large sieve methods. We derive upper bounds for concentration in terms of the maximum Nyquist density. Our proof uses estimates of the spherical harmonics basis coefficients of certain zonal filters and an ordering result for Jacobi polynomials for arguments close to one.< Réduire
Origine
Importé de halUnités de recherche