Généralisation d'un Théorème d'Iwasawa
Langue
fr
Article de revue
Ce document a été publié dans
Journal de Théorie des Nombres de Bordeaux. 2005, vol. 17, p. 527--553
Société Arithmétique de Bordeaux
Résumé en anglais
We extend to convenient finite quotients of a noetherian Lambda-module the classical result of K. Iwasawa giving the asymptotic expression of the l-part of the number of ideal class groups in Zl-extensions of number fields. ...Lire la suite >
We extend to convenient finite quotients of a noetherian Lambda-module the classical result of K. Iwasawa giving the asymptotic expression of the l-part of the number of ideal class groups in Zl-extensions of number fields. Then, in the arithmetic context, we compute the three characters associated by this way to the l-groups of T-infinitesimal S-classes in the cyclotomic tower and relate them to the classical invariants and the decomposition characters associated to the finite sets of places S and T. A main tool in this study is the so-called Spiegelungssatz of Georges Gras, which exchanges (wild or tame) ramification and decomposition. The main results of this arithmetical part extend those we obtained with Christian Maire in a previous article. The most intricate study of the wild contribution of the sets S and T involves a generalization of a classical result of R. Greenberg on the genus theory of cyclotomic towers.< Réduire
Origine
Importé de halUnités de recherche