Solution Property Preserving Reconstruction BVD+MOOD Scheme for Compressible Euler Equations with Source Terms and Detonations
Langue
en
Article de revue
Ce document a été publié dans
Computers and Fluids. 2020-05-25
Elsevier
Date de soutenance
2020-05-25Résumé en anglais
In "Solution Property Reconstruction for Finite Volume scheme: a BVD+MOOD framework", Int. J. Numer. Methods Fluids, 2020, we have designed a novel solution property preserving reconstruction, so-called multi-stage BVD-MOOD ...Lire la suite >
In "Solution Property Reconstruction for Finite Volume scheme: a BVD+MOOD framework", Int. J. Numer. Methods Fluids, 2020, we have designed a novel solution property preserving reconstruction, so-called multi-stage BVD-MOOD scheme. The scheme is able to maintain a high accuracy in smooth profile, eliminate the oscillations in the vicinity of discontinuity, capture sharply discontinuity and preserve some physical properties like the positivity of density and pressure for the Euler equations of compressible gas dynamics. In this paper, we present an extension of this approach for the compressible Euler equations supplemented with source terms (e.g., gravity, chemical reaction). One of the main challenges when simulating these models is the occurrence of negative density or pressure during the time evolution, which leads to a blow-up of the computation. General compressible Euler equations with different type of source terms are considered as models for physical situations such as detonation waves. Then, we illustrate the performance of the proposed scheme via a numerical test suite including genuinely demanding numerical tests. We observe that the present scheme is able to preserve the physical properties of the numerical solution still ensuring robustness and accuracy when and where appropriate.< Réduire
Mots clés en anglais
THINC
multi-stage BVD
Finite volume
positivity-preserving
MOOD
soruce terms
Origine
Importé de halUnités de recherche