On stability condition for bifluid flows with surface tension : application to microfluidics
VIGNEAUX, Paul
Institut de Mathématiques de Bordeaux [IMB]
Laboratoire de Mathématiques [LAMA]
Numerical Medicine [NUMED]
Institut de Mathématiques de Bordeaux [IMB]
Laboratoire de Mathématiques [LAMA]
Numerical Medicine [NUMED]
VIGNEAUX, Paul
Institut de Mathématiques de Bordeaux [IMB]
Laboratoire de Mathématiques [LAMA]
Numerical Medicine [NUMED]
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
Laboratoire de Mathématiques [LAMA]
Numerical Medicine [NUMED]
Langue
en
Article de revue
Ce document a été publié dans
Journal of Computational Physics. 2008-06-01, vol. 227, n° 12, p. 6140-6164
Elsevier
Résumé en anglais
Models for incompressible immiscible bifluid flows with surface tension are here considered. Since Brackbill, Kothe and Zemach (J. Comput. Phys. 100, pp 335-354, 1992) introduced the Continuum Surface Force (CSF) method, ...Lire la suite >
Models for incompressible immiscible bifluid flows with surface tension are here considered. Since Brackbill, Kothe and Zemach (J. Comput. Phys. 100, pp 335-354, 1992) introduced the Continuum Surface Force (CSF) method, many methods involved in interface tracking or capturing are based on this reference work. Particularly, the surface tension term is discretized explicitly and therefore, a stability condition is induced on the computational time step. This constraint on the time step allows the containment of the amplification of capillary waves along the interface and puts more emphasis on the terms linked with the density in the Navier-Stokes equation (i. e. unsteady and inertia terms) rather than on the viscous terms. Indeed, the viscosity does not appear, as a parameter, in this stability condition. We propose a new stability condition which takes into account all fluid characteristics (density and viscosity) and for which we present a theoretical estimation. We detail the analysis which is based on a perturbation study - with capillary wave - for which we use energy estimate on the induced perturbed velocity. We validate our analysis and algorithms with numerical simulations of microfluidic flows using a Level Set method, namely the exploration of different mixing dynamics inside microdroplets.< Réduire
Mots clés en anglais
surface tension
curvature
stability condition
bifluid flows
incompressible Navier-Stokes
level set
cartesian finite-volumes
microfluidics
droplets
Project ANR
SCAN (Smart Chips for Analysis) - ANR-06-NANO-0048
Origine
Importé de halUnités de recherche