Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Toulon - EA 2134 [IMATH]
dc.contributor.authorGALUSINSKI, Cedric
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierLaboratoire de Mathématiques [LAMA]
hal.structure.identifierNumerical Medicine [NUMED]
dc.contributor.authorVIGNEAUX, Paul
dc.date.created2007-02-16
dc.date.issued2008-06-01
dc.identifier.issn0021-9991
dc.description.abstractEnModels for incompressible immiscible bifluid flows with surface tension are here considered. Since Brackbill, Kothe and Zemach (J. Comput. Phys. 100, pp 335-354, 1992) introduced the Continuum Surface Force (CSF) method, many methods involved in interface tracking or capturing are based on this reference work. Particularly, the surface tension term is discretized explicitly and therefore, a stability condition is induced on the computational time step. This constraint on the time step allows the containment of the amplification of capillary waves along the interface and puts more emphasis on the terms linked with the density in the Navier-Stokes equation (i. e. unsteady and inertia terms) rather than on the viscous terms. Indeed, the viscosity does not appear, as a parameter, in this stability condition. We propose a new stability condition which takes into account all fluid characteristics (density and viscosity) and for which we present a theoretical estimation. We detail the analysis which is based on a perturbation study - with capillary wave - for which we use energy estimate on the induced perturbed velocity. We validate our analysis and algorithms with numerical simulations of microfluidic flows using a Level Set method, namely the exploration of different mixing dynamics inside microdroplets.
dc.description.sponsorshipSCAN (Smart Chips for Analysis) - ANR-06-NANO-0048
dc.language.isoen
dc.publisherElsevier
dc.subject.ensurface tension
dc.subject.encurvature
dc.subject.enstability condition
dc.subject.enbifluid flows
dc.subject.enincompressible Navier-Stokes
dc.subject.enlevel set
dc.subject.encartesian finite-volumes
dc.subject.enmicrofluidics
dc.subject.endroplets
dc.title.enOn stability condition for bifluid flows with surface tension : application to microfluidics
dc.typeArticle de revue
dc.identifier.doi10.1016/j.jcp.2008.02.023
dc.subject.halMathématiques [math]/Analyse numérique [math.NA]
bordeaux.journalJournal of Computational Physics
bordeaux.page6140-6164
bordeaux.volume227
bordeaux.issue12
bordeaux.peerReviewedoui
hal.identifierhal-00274569
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00274569v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Computational%20Physics&rft.date=2008-06-01&rft.volume=227&rft.issue=12&rft.spage=6140-6164&rft.epage=6140-6164&rft.eissn=0021-9991&rft.issn=0021-9991&rft.au=GALUSINSKI,%20Cedric&VIGNEAUX,%20Paul&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée