Computing isogenies from modular equations in genus two
KIEFFER, Jean
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
PAGE, Aurel
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Analyse cryptographique et arithmétique [CANARI]
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Analyse cryptographique et arithmétique [CANARI]
ROBERT, Damien
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Analyse cryptographique et arithmétique [CANARI]
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Analyse cryptographique et arithmétique [CANARI]
KIEFFER, Jean
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
PAGE, Aurel
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Analyse cryptographique et arithmétique [CANARI]
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Analyse cryptographique et arithmétique [CANARI]
ROBERT, Damien
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Analyse cryptographique et arithmétique [CANARI]
< Réduire
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Analyse cryptographique et arithmétique [CANARI]
Langue
en
Document de travail - Pré-publication
Résumé en anglais
We present an algorithm solving the following problem: given two genus 2 curves over a field k with isogenous Jacobians, compute such an isogeny explicitly. This isogeny can be either an l-isogeny or, in the real ...Lire la suite >
We present an algorithm solving the following problem: given two genus 2 curves over a field k with isogenous Jacobians, compute such an isogeny explicitly. This isogeny can be either an l-isogeny or, in the real multiplication case, an isogeny with cyclic kernel; we require that k have large enough characteristic and that the curves be sufficiently generic. Our algorithm uses modular equations for these isogeny types, and makes essential use of an explicit Kodaira--Spencer isomorphism in genus 2.< Réduire
Mots clés en anglais
Abelian surfaces
Algorithm
Modular equations
Isogenies
Project ANR
Cryptographie, isogenies et variété abéliennes surpuissantes - ANR-19-CE48-0008
Origine
Importé de halUnités de recherche