Spatial mechanistic modeling for prediction of the growth of asymptomatic meningioma
COLLIN, Annabelle
Institut Polytechnique de Bordeaux [Bordeaux INP]
Modélisation Mathématique pour l'Oncologie [MONC]
Institut Polytechnique de Bordeaux [Bordeaux INP]
Modélisation Mathématique pour l'Oncologie [MONC]
COPOL, Cédrick
Modélisation Mathématique pour l'Oncologie [MONC]
Institut de Mathématiques de Bordeaux [IMB]
Voir plus >
Modélisation Mathématique pour l'Oncologie [MONC]
Institut de Mathématiques de Bordeaux [IMB]
COLLIN, Annabelle
Institut Polytechnique de Bordeaux [Bordeaux INP]
Modélisation Mathématique pour l'Oncologie [MONC]
Institut Polytechnique de Bordeaux [Bordeaux INP]
Modélisation Mathématique pour l'Oncologie [MONC]
COPOL, Cédrick
Modélisation Mathématique pour l'Oncologie [MONC]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation Mathématique pour l'Oncologie [MONC]
Institut de Mathématiques de Bordeaux [IMB]
LOISEAU, Hugues
Groupe hospitalier Pellegrin
Imagerie moléculaire et thérapies innovantes en oncologie [IMOTION]
Groupe hospitalier Pellegrin
Imagerie moléculaire et thérapies innovantes en oncologie [IMOTION]
SAUT, Olivier
Institut de Mathématiques de Bordeaux [IMB]
Modélisation Mathématique pour l'Oncologie [MONC]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation Mathématique pour l'Oncologie [MONC]
TATON, Benjamin
Modélisation Mathématique pour l'Oncologie [MONC]
Institut de Mathématiques de Bordeaux [IMB]
Groupe hospitalier Pellegrin
< Réduire
Modélisation Mathématique pour l'Oncologie [MONC]
Institut de Mathématiques de Bordeaux [IMB]
Groupe hospitalier Pellegrin
Langue
en
Article de revue
Ce document a été publié dans
Computer Methods and Programs in Biomedicine. 2020
Elsevier
Date de soutenance
2020Résumé en anglais
Mathematical modeling of tumor growth draws interest from the medical community as they have the potential to improve patients' care and the use of public health resources. The main objectives of this work are to model the ...Lire la suite >
Mathematical modeling of tumor growth draws interest from the medical community as they have the potential to improve patients' care and the use of public health resources. The main objectives of this work are to model the growth of meningiomas-slow-growing benign tumors requiring extended imaging follow-up-and to predict tumor volume and shape at a later desired time using only two time examinations. We propose two variants of a 3D partial differential system of equations (PDE) which yield after a spatial integration systems of ordinary differential equations (ODE) that relate tumor volume with time. Estimation of models parameters is a crucial step for obtaining a personalized model for a patient that can be used for descriptive or predictive purposes. As PDE and ODE systems share the same parameters, they are both estimated by fitting the ODE systems to the tumor volumes obtained from MRI examinations acquired at different times. A population approach allows to compensate for sparse sampling times and measurement uncertainties by constraining the variability of the parameters in the population. Description capabilities of the models are investigated in 40 patients with benign asymptomatic meningiomas who had had at least 3 surveillance MRI examinations. The two models can fit to the data accurately and more realistically than a naive linear regression. Prediction performances are validated for 33 patients using a population approach. Mean relative errors in volume predictions are less than 10% with ODE systems versus 12.5% with the naive linear model using only two time examinations. Concerning the shape, the mean Sørensen-Dice coefficients are 85% with the PDE systems in a subset of 10 representative patients.< Réduire
Mots clés en anglais
Inverse problem
PDE Modeling
Meningiomas
Tumor Growth
Origine
Importé de halUnités de recherche