Lambert $W$-Function Branch Identities
COHEN, Henri
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Analyse cryptographique et arithmétique [CANARI]
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Analyse cryptographique et arithmétique [CANARI]
COHEN, Henri
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Analyse cryptographique et arithmétique [CANARI]
< Réduire
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Analyse cryptographique et arithmétique [CANARI]
Langue
en
Document de travail - Pré-publication
Résumé en anglais
After defining in detail the Lambert $W$-function branches, we give a large number of exact identities involving (infinite) symmetric functions of these branches, as well as geometrically convergent series for all the ...Lire la suite >
After defining in detail the Lambert $W$-function branches, we give a large number of exact identities involving (infinite) symmetric functions of these branches, as well as geometrically convergent series for all the branches. In doing so, we introduce a family of polynomials which may be of independent interest.< Réduire
Origine
Importé de halUnités de recherche