Semiclassical Resonances of Schrödinger operators as zeroes of regularized determinants
Langue
en
Article de revue
Ce document a été publié dans
International Mathematics Research Notices. 2008, vol. 2008, p. ID rnn002, 55 pages
Oxford University Press (OUP)
Résumé en anglais
We prove that the resonances of long range perturbations of the (semiclassical) Laplacian are the zeroes of natural perturbation determinants. We more precisely obtain factorizations of these determinants of the form $ ...Lire la suite >
We prove that the resonances of long range perturbations of the (semiclassical) Laplacian are the zeroes of natural perturbation determinants. We more precisely obtain factorizations of these determinants of the form $ \prod_{w = {\rm resonances}}(z-w) \exp (\varphi_p(z,h)) $ and give semiclassical bounds on $ \partial_z \varphi_p $ as well as a representation of Koplienko's regularized spectral shift function. Here the index $ p \geq 1 $ depends on the decay rate at infinity of the perturbation.< Réduire
Mots clés en anglais
Schrödinger operator
resonances
semi-classical
relative determinant
spectral shift function
scattering
Breit-Wigner
Origine
Importé de halUnités de recherche