Computing the Hilbert Class Fields of Quartic CM Fields Using Complex Multiplication
ASUNCION, Jared
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Mathematical institute
Analyse cryptographique et arithmétique [CANARI]
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Mathematical institute
Analyse cryptographique et arithmétique [CANARI]
ASUNCION, Jared
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Mathematical institute
Analyse cryptographique et arithmétique [CANARI]
< Leer menos
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Mathematical institute
Analyse cryptographique et arithmétique [CANARI]
Idioma
en
Document de travail - Pré-publication
Resumen en inglés
Let K be a quartic CM field, that is, a totally imaginary quadratic extension of a real quadratic number field. In a 1962 article titled On the classfields obtained by complex multiplication of abelian varieties, Shimura ...Leer más >
Let K be a quartic CM field, that is, a totally imaginary quadratic extension of a real quadratic number field. In a 1962 article titled On the classfields obtained by complex multiplication of abelian varieties, Shimura considered a particular family {F_K(m) : m ∈ Z >0 } of abelian extensions of K, and showed that the Hilbert class field H_K of K is contained in F_K(m) for some positive integer m. We make this m explicit. We then give an algorithm that computes a set of defining polynomials for the Hilbert class field using the field F_K(m). Our proof-of-concept implementation of this algorithm computes a set of defining polynomials much faster than current implementations of the generic Kummer algorithm for certain examples of quartic CM fields.< Leer menos
Orígen
Importado de HalCentros de investigación