Some remarks on analytic continuation and embeddings in weighted backward shift invariant subspaces
Langue
en
Article de revue
Ce document a été publié dans
Archiv der Mathematik. 2011, vol. 96, n° 1, p. 59-75
Springer Verlag
Résumé en anglais
By a famous result, functions in backward shift invariant subspaces in Hardy spaces are characterized by the fact that they admit a pseudocontinuation a.e. on $\T$. More can be said if the spectrum of the associated inner ...Lire la suite >
By a famous result, functions in backward shift invariant subspaces in Hardy spaces are characterized by the fact that they admit a pseudocontinuation a.e. on $\T$. More can be said if the spectrum of the associated inner function has holes on $\T$. Then the functions of the invariant subspaces even extend analytically through these holes. We will discuss the situation in weighted backward shift invariant subspaces. The results on analytic continuation will be applied to consider some embeddings of weighted invariant subspaces into their unweighted companions. Such weighted versions of invariant subspaces appear naturally in the context of Toeplitz operators. A connection between the spectrum of the inner function and the approximate point spectrum of the backward shift in the weighted situation is established in the spirit of results by Aleman, Richter and Ross.< Réduire
Mots clés en anglais
analytic continuation
backward shift
embedding
invariant subspace
Muckenhoupt condition
spectrum
Toeplitz operators
Origine
Importé de halUnités de recherche