Multi-dimensional simulation of phase change by a 0D-2D model coupling via Stefan condition
LOUBÈRE, Raphaël
Institut de Mathématiques de Bordeaux [IMB]
Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone (CEA - DES) [IRESNE]
Institut de Mathématiques de Bordeaux [IMB]
Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone (CEA - DES) [IRESNE]
DROUILLET, Adrien
Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone (CEA - DES) [IRESNE]
Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone (CEA - DES) [IRESNE]
LE TELLIER, Romain
Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone (CEA - DES) [IRESNE]
Leer más >
Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone (CEA - DES) [IRESNE]
LOUBÈRE, Raphaël
Institut de Mathématiques de Bordeaux [IMB]
Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone (CEA - DES) [IRESNE]
Institut de Mathématiques de Bordeaux [IMB]
Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone (CEA - DES) [IRESNE]
DROUILLET, Adrien
Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone (CEA - DES) [IRESNE]
Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone (CEA - DES) [IRESNE]
LE TELLIER, Romain
Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone (CEA - DES) [IRESNE]
Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone (CEA - DES) [IRESNE]
VIOT, Louis
Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone (CEA - DES) [IRESNE]
< Leer menos
Institut de recherche sur les systèmes nucléaires pour la production d'énergie bas carbone (CEA - DES) [IRESNE]
Idioma
en
Article de revue
Este ítem está publicado en
Communications on Applied Mathematics and Computation. 2021, vol. 5, p. 883-884
Springer
Resumen en inglés
Considering phase changes associated with a high-temperature molten material cooled down from the outside, this work presents an improvement of the modelling and the numerical simulation of such processes for an application ...Leer más >
Considering phase changes associated with a high-temperature molten material cooled down from the outside, this work presents an improvement of the modelling and the numerical simulation of such processes for an application pertaining to the safety of light water nuclear reactors. Postulating a core meltdown accident, the behaviour of the core melt (aka corium) into a steel vessel is of tremendous importance when evaluating the vessel integrity. Evaluating correctly the heat fluxes requires the numerical simulation of the interaction between the liquid material and its solid counterpart which forms during the solidification process, but also may melt back. To simulate this configuration, encountered in various industrial applications, one considers a bi-phase model constituted by a liquid phase in contact and interaction with its solid phase. The liquid phase may solidify in presence of low energetic source, while the solid phase may melt due to an intense heat flux from the high-temperature liquid. In the frame of the in-house legacy code, several simplifying assumptions (0D multi-layer discretization, instantaneous heat transfer via a quadratic temperature profile in solids) are made for the modelling of such phase changes. In the present work, these shortcomings are illustrated and further overcome by solving a 2D heat conduction model in the solid by a mixed Raviart-Thomas finite element method coupled to the liquid phase due to heat and mass exchanges through Stefan condition. The liquid phase is modeled with a 0D multi-layer approach. The 0D-liquid and 2D-solid models are coupled by a Stefan like phase change interface model. Several sanity checks are performed to assess the validity of the approach on 1D and 2D academical configurations for which exact or reference solutions are available. Then more advanced situations (genuine multidimensional phase changes and an "industrial-like scenario") are simulated to verify the appropriate behavior of the obtained coupled simulation scheme.< Leer menos
Palabras clave en inglés
Simulation of phase change
Fusion
Solidification
0D multi-layer model
2D heat conduction model
Model coupling
Simulation of phase change
Orígen
Importado de HalCentros de investigación