Where are the zeroes of a random p-adic polynomial?
CARUSO, Xavier
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
CARUSO, Xavier
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
< Réduire
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Langue
en
Article de revue
Ce document a été publié dans
Forum of Mathematics, Sigma. 2022-07, vol. 10, p. e55
Cambridge University press
Résumé en anglais
We study the repartition of the roots of a random p-adic polynomial in an algebraic closure of Qp.We prove that the mean number of roots generating a fixed finite extension K of Qp depends mostly on the discriminant of K, ...Lire la suite >
We study the repartition of the roots of a random p-adic polynomial in an algebraic closure of Qp.We prove that the mean number of roots generating a fixed finite extension K of Qp depends mostly on the discriminant of K, an extension containing less roots when it gets more ramified. We prove further that, for any positive integer r, a random p-adic polynomial of sufficiently large degree has about r roots on average in extensions of degree at most r.Beyond the mean, we also study higher moments and correlations between the number of roots in two given subsets of Qp (or, more generally, of a finite extension of Qp). In this perspective, we notably establish results highlighting that the roots tend to repel each other and quantify this phenomenon.< Réduire
Mots clés en anglais
random p-adic polynomials
mass formula
Project ANR
Correspondance de Langlands p-adique : une approche constructive et algorithmique - ANR-18-CE40-0026
Origine
Importé de halUnités de recherche