POPCORN: Progressive Pseudo-labeling with Consistency Regularization and Neighboring
Langue
en
Communication dans un congrès
Ce document a été publié dans
International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI'21), 2021-09-27, Strasbourg (virtual). 2021, vol. 12902, p. 373-382
Date de soutenance
2021Résumé en anglais
Semi-supervised learning (SSL) uses unlabeled data to compensate for the scarcity of annotated images and the lack of method generalization to unseen domains, two usual problems in medical segmentation tasks. In this work, ...Lire la suite >
Semi-supervised learning (SSL) uses unlabeled data to compensate for the scarcity of annotated images and the lack of method generalization to unseen domains, two usual problems in medical segmentation tasks. In this work, we propose POPCORN, a novel method combining consistency regularization and pseudo-labeling designed for image segmentation. The proposed framework uses high-level regularization to constrain our segmentation model to use similar latent features for images with similar segmentations. POPCORN estimates a proximity graph to select data from easiest ones to more difficult ones, in order to ensure accurate pseudo-labeling and to limit confirmation bias. Applied to multiple sclerosis lesion segmentation, our method demonstrates competitive results compared to other state-of-the-art SSL strategies.< Réduire
Mots clés en anglais
MS lesion segmentation
Consistency regularization
Pseudo-labeling
Semi-supervised Learning
Project ANR
Apprentissage profond pour la volumétrie cérébrale : vers le BigData en neuroscience - ANR-18-CE45-0013
Origine
Importé de halUnités de recherche