Experimental and computational modeling for signature and biomarker discovery of renal cell carcinoma progression
RUDEWICZ, Justine
Laboratoire Angiogenèse et Micro-environnement des Cancers [LAMC]
Centre de Bioinformatique de Bordeaux [CBIB]
Voir plus >
Laboratoire Angiogenèse et Micro-environnement des Cancers [LAMC]
Centre de Bioinformatique de Bordeaux [CBIB]
RUDEWICZ, Justine
Laboratoire Angiogenèse et Micro-environnement des Cancers [LAMC]
Centre de Bioinformatique de Bordeaux [CBIB]
Laboratoire Angiogenèse et Micro-environnement des Cancers [LAMC]
Centre de Bioinformatique de Bordeaux [CBIB]
ALVAREZ-ARENAS, Arturo
Modélisation Mathématique pour l'Oncologie [MONC]
Mathematical Oncology Laboratory [Ciudad Real] [MôLAB]
Modélisation Mathématique pour l'Oncologie [MONC]
Mathematical Oncology Laboratory [Ciudad Real] [MôLAB]
DUFIES, Maeva
Centre Scientifique de Monaco [CSM]
Institut de Recherche sur le Cancer et le Vieillissement [IRCAN]
Centre Scientifique de Monaco [CSM]
Institut de Recherche sur le Cancer et le Vieillissement [IRCAN]
CHALOPIN-FILLOT, Domitille
Institut de biochimie et génétique cellulaires [IBGC]
Immunology from Concept and Experiments to Translation = Immunologie Conceptuelle, Expérimentale et Translationnelle [ImmunoConcept]
Centre de Bioinformatique de Bordeaux [CBIB]
Institut de biochimie et génétique cellulaires [IBGC]
Immunology from Concept and Experiments to Translation = Immunologie Conceptuelle, Expérimentale et Translationnelle [ImmunoConcept]
Centre de Bioinformatique de Bordeaux [CBIB]
PAGÈS, Gilles
Centre Scientifique de Monaco [CSM]
Institut de Recherche sur le Cancer et le Vieillissement [IRCAN]
Centre Scientifique de Monaco [CSM]
Institut de Recherche sur le Cancer et le Vieillissement [IRCAN]
BENZEKRY, Sebastien
Méthodes computationnelles pour la prise en charge thérapeutique en oncologie : Optimisation des stratégies par modélisation mécaniste et statistique [COMPO]
Modélisation Mathématique pour l'Oncologie [MONC]
Méthodes computationnelles pour la prise en charge thérapeutique en oncologie : Optimisation des stratégies par modélisation mécaniste et statistique [COMPO]
Modélisation Mathématique pour l'Oncologie [MONC]
NIKOLSKI, Macha
Institut de biochimie et génétique cellulaires [IBGC]
Centre de Bioinformatique de Bordeaux [CBIB]
< Réduire
Institut de biochimie et génétique cellulaires [IBGC]
Centre de Bioinformatique de Bordeaux [CBIB]
Langue
en
Article de revue
Ce document a été publié dans
Molecular Cancer. 2021-12, vol. 20, n° 1
BioMed Central
Résumé en anglais
Abstract Background Renal Cell Carcinoma (RCC) is difficult to treat with 5-year survival rate of 10% in metastatic patients. Main reasons of therapy failure are lack of validated biomarkers and scarce knowledge of the ...Lire la suite >
Abstract Background Renal Cell Carcinoma (RCC) is difficult to treat with 5-year survival rate of 10% in metastatic patients. Main reasons of therapy failure are lack of validated biomarkers and scarce knowledge of the biological processes occurring during RCC progression. Thus, the investigation of mechanisms regulating RCC progression is fundamental to improve RCC therapy. Methods In order to identify molecular markers and gene processes involved in the steps of RCC progression, we generated several cell lines of higher aggressiveness by serially passaging mouse renal cancer RENCA cells in mice and, concomitantly, performed functional genomics analysis of the cells. Multiple cell lines depicting the major steps of tumor progression (including primary tumor growth, survival in the blood circulation and metastatic spread) were generated and analyzed by large-scale transcriptome, genome and methylome analyses. Furthermore, we performed clinical correlations of our datasets. Finally we conducted a computational analysis for predicting the time to relapse based on our molecular data. Results Through in vivo passaging, RENCA cells showed increased aggressiveness by reducing mice survival, enhancing primary tumor growth and lung metastases formation. In addition, transcriptome and methylome analyses showed distinct clustering of the cell lines without genomic variation. Distinct signatures of tumor aggressiveness were revealed and validated in different patient cohorts. In particular, we identified SAA2 and CFB as soluble prognostic and predictive biomarkers of the therapeutic response. Machine learning and mathematical modeling confirmed the importance of CFB and SAA2 together, which had the highest impact on distant metastasis-free survival. From these data sets, a computational model predicting tumor progression and relapse was developed and validated. These results are of great translational significance. Conclusion A combination of experimental and mathematical modeling was able to generate meaningful data for the prediction of the clinical evolution of RCC.< Réduire
Origine
Importé de halUnités de recherche