Unfolding homogenization method applied to physiological and phenomenological bidomain models in electrocardiology
TALHOUK, Raafat
الجامعة اللبنانية [بيروت] = Lebanese University [Beirut] = Université libanaise [Beyrouth] [LU / ULB]
< Réduire
الجامعة اللبنانية [بيروت] = Lebanese University [Beirut] = Université libanaise [Beyrouth] [LU / ULB]
Langue
en
Article de revue
Ce document a été publié dans
Nonlinear Analysis: Real World Applications. 2019-12, vol. 50, p. 413-447
Elsevier
Résumé en anglais
In this paper, we apply a rigorous homogenization method based on unfolding operators to a microscopic bidomain model representing the electrical activity of the heart at a cellular level. The heart is represented by an ...Lire la suite >
In this paper, we apply a rigorous homogenization method based on unfolding operators to a microscopic bidomain model representing the electrical activity of the heart at a cellular level. The heart is represented by an arbitrary open bounded connected domain with smooth boundary and the cardiac cells’ (myocytes) domain is viewed as a periodic region. We start by proving the well posedness of the microscopic problem by using Faedo–Galerkin method and -compactness argument on the membrane surface without any restrictive assumptions on the conductivity matrices. Using the unfolding method in homogenization, we show that the sequence of solutions constructed in the microscopic model converges to the solution of the macroscopic bidomain model. Because of the nonlinear ionic function, the proof is based on the surface unfolding method and Kolmogorov compactness argument.< Réduire
Mots clés en anglais
Bidomain model
Reaction–diffusion system
Homogenization theory
Unfolding method
Convergence
Project ANR
Centre de Mathématiques Henri Lebesgue : fondements, interactions, applications et Formation - ANR-11-LABX-0020
Origine
Importé de halUnités de recherche