Source and metric estimation in the eikonal equation using optimization on a manifold
WEYNANS, Lisl
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
WEYNANS, Lisl
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
< Leer menos
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
Idioma
en
Document de travail - Pré-publication
Resumen en inglés
We address the estimation of the source(s) location in the eikonal equation on a Riemann surface, as well as the determination of the metric when it depends on a few parameters. The available observations are the arrival ...Leer más >
We address the estimation of the source(s) location in the eikonal equation on a Riemann surface, as well as the determination of the metric when it depends on a few parameters. The available observations are the arrival times or are obtained indirectly from the arrival times by an observation operator, this frame is intended to describe electro-cardiographic imaging. The sensitivity of the arrival times is computed from Log x the log map wrt to the source x on the surface. The Log x map is approximated by solving an elliptic vectorial equation, using the Vector Heat Method. The L 2-error function between the model predictions and the observations is minimized using Gauss-Newton optimization on the Riemann surface. This allows to obtain fast convergence. We present numerical results, where coefficients describing the metric are also recovered like anisotropy and global orientation.< Leer menos
Palabras clave en inglés
Inverse problem
electrocardiographic imaging
eikonal equation
Orígen
Importado de HalCentros de investigación