An epi‐evolutionary model for predicting the adaptation of spore‐producing pathogens to quantitative resistance in heterogeneous environments
RICHARD, Quentin
Maladies infectieuses et vecteurs : écologie, génétique, évolution et contrôle [MIVEGEC]
Maladies infectieuses et vecteurs : écologie, génétique, évolution et contrôle [MIVEGEC]
DJIDJOU-DEMASSE, Ramsès
Maladies infectieuses et vecteurs : écologie, génétique, évolution et contrôle [MIVEGEC]
< Réduire
Maladies infectieuses et vecteurs : écologie, génétique, évolution et contrôle [MIVEGEC]
Langue
en
Article de revue
Ce document a été publié dans
Evolutionary Applications. 2022p. 95-110
Blackwell
Résumé en anglais
We have modeled the evolutionary epidemiology of spore-producing plant pathogens in heterogeneous environments sown with several cultivars carrying quantitative resistances. The model explicitly tracks the infection-age ...Lire la suite >
We have modeled the evolutionary epidemiology of spore-producing plant pathogens in heterogeneous environments sown with several cultivars carrying quantitative resistances. The model explicitly tracks the infection-age structure and genetic composition of the pathogen population. Each strain is characterized by pathogenicity traits determining its infection efficiency and a time-varying sporulation curve taking into account lesion aging. We first derived a general expression of the basic reproduction number urn:x-wiley:17524571:media:eva13328:eva13328-math-0001 for fungal pathogens in heterogeneous environments. We show that the evolutionary attractors of the model coincide with local maxima of urn:x-wiley:17524571:media:eva13328:eva13328-math-0002 only if the infection efficiency is the same on all host types. We then studied the contribution of three basic resistance characteristics (the pathogenicity trait targeted, resistance effectiveness, and adaptation cost), in interaction with the deployment strategy (proportion of fields sown with a resistant cultivar), to (i) pathogen diversification at equilibrium and (ii) the shaping of transient dynamics from evolutionary and epidemiological perspectives. We show that quantitative resistance affecting only the sporulation curve will always lead to a monomorphic population, whereas dimorphism (i.e., pathogen diversification) can occur if resistance alters infection efficiency, notably with high adaptation costs and proportions of the resistant cultivar. Accordingly, the choice of the quantitative resistance genes operated by plant breeders is a driver of pathogen diversification. From an evolutionary perspective, the time to emergence of the evolutionary attractor best adapted to the resistant cultivar tends to be shorter when resistance affects infection efficiency than when it affects sporulation. Conversely, from an epidemiological perspective, epidemiological control is always greater when the resistance affects infection efficiency. This highlights the difficulty of defining deployment strategies for quantitative resistance simultaneously maximizing epidemiological and evolutionary outcomes.< Réduire
Mots clés en anglais
adaptive dynamics
basic reproduction number
integro-differential equations
quantitative resistance
resistance durability
spore-producing pathogens
Project ANR
Structuration spatiale, traitements et épidémiologie évolutive des parasites - ANR-16-CE35-0012
Architecture génétique des caractères quantitatifs dans les interactions plante-virus: conséquences pour la gestion des variétés résistantes et/ou tolérantes à l'échelle du paysage. - ANR-18-CE32-0004
Architecture génétique des caractères quantitatifs dans les interactions plante-virus: conséquences pour la gestion des variétés résistantes et/ou tolérantes à l'échelle du paysage. - ANR-18-CE32-0004
Origine
Importé de halUnités de recherche