Fonction asymptotique de Samuel des sections hyperplanes et multiplicité
Idioma
fr
Document de travail - Pré-publication
Resumen en inglés
Let $(A,\mathfrak{m}_A,k)$ be a local noetherian ring and $I$ an $\mathfrak{m}_A$-primary ideal. The asymptotic Samuel function (with respect to $I$) $\overline{v}_I$ $:$ $A\longrightarrow \mathbb{R}\cup {+\infty}$ is ...Leer más >
Let $(A,\mathfrak{m}_A,k)$ be a local noetherian ring and $I$ an $\mathfrak{m}_A$-primary ideal. The asymptotic Samuel function (with respect to $I$) $\overline{v}_I$ $:$ $A\longrightarrow \mathbb{R}\cup {+\infty}$ is defined by $\overline{v}_I(x)=lim_{k \rightarrow \+infty}\frac{ord_I(x^k}{k}$, $\forall x \in A$. Similary, one defines for another ideal $J$, $\overline{v}_I(J)$ as the minimum of $\overline{v}_I(x)$ as $x$ varies in $J$. Of special interest is the rational number $\overline{v}_I(\mathfrak{m}_A)$. We study the behavior of the Asymptotic Samuel Function (with respect to $I$) when passing to hyperplanes sections of $A$ as one does for the theory of mixed multiplicities.< Leer menos
Palabras clave en inglés
Asymptotic Samuel function
Hyperplanes sections
Integral closure of ideals
Multiplicity
"Asymptotic Samuel function"
"Hyperplanes sections"
"Integral closure of ideals"
"Multiplicity"
Orígen
Importado de HalCentros de investigación