Show simple item record

hal.structure.identifierInstitute of Mathematics of the Czech Academy of Science [IM / CAS]
dc.contributor.authorHAJEK, Petr
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierLaboratoire de Mathématiques de Besançon (UMR 6623) [LMB]
dc.contributor.authorPROCHAZKA, Antonin
dc.date.accessioned2024-04-04T02:42:29Z
dc.date.available2024-04-04T02:42:29Z
dc.date.created2009-01
dc.date.issued2014
dc.identifier.issn0002-9947
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/191246
dc.description.abstractEnLet $X$ be a WCG Banach space admitting a $C^k$-Fr\' echet smooth norm. Then $X$ admits an equivalent norm which is simultaneously $C^1$-Fr\' echet smooth, LUR, and a uniform limit of $C^k$-Fr\' echet smooth norms. If $X=C([0,\alpha])$, where $\alpha$ is an ordinal, then the same conclusion holds true with $k=\infty$.
dc.language.isoen
dc.publisherAmerican Mathematical Society
dc.subject.enLUR
dc.subject.enhigher order differentiability
dc.subject.enrenorming
dc.title.en$C^k$-smooth approximations of LUR norms
dc.typeArticle de revue
dc.identifier.doi10.1090/S0002-9947-2013-05899-0
dc.subject.halMathématiques [math]/Analyse fonctionnelle [math.FA]
dc.identifier.arxiv0901.3623
bordeaux.journalTransactions of the American Mathematical Society
bordeaux.page1973-1992
bordeaux.volume366
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00355409
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00355409v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.date=2014&rft.volume=366&rft.spage=1973-1992&rft.epage=1973-1992&rft.eissn=0002-9947&rft.issn=0002-9947&rft.au=HAJEK,%20Petr&PROCHAZKA,%20Antonin&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record